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When the sample size is small compared to the number of cells in a contingency table,
maximum likelihood estimates of logit parameters and their associated standard errors
may not exist or may be biased. This problem is usually solved by “smoothing” the
estimates, assuming a certain prior distribution for the parameters. This article inves-
tigates the performance of point and interval estimates obtained by assuming various
prior distributions. The authors focus on two logit parameters of a 2 × 2 × 2 table:
the interaction effect of two predictors on a response variable and the main effect of
one of two predictors on a response variable, under the assumption that the inter-
action effect is zero. The results indicate the superiority of the posterior mode to the
posterior mean.
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When the sample size is small in comparison with the number of cells
in the contingency table, there may be a number of cells that contain
few or no observations. In such sparse tables, standard statistical pro-
cedures based on large-sample assumptions do not work as well as
we would like. Maximum likelihood (ML) estimates of certain log-
linear parameters may not exist or may be on the boundary of the
parameter space. Clogg et al. (1991) report the difficulties with zero
cells when standard log-linear analysis software is used.

Adding a small constant, generally 0.5, to every cell of the observed
table has been a common recommendation in some standard refer-
ences; for example, Goodman (1970) recommended this practice for
saturated log-linear models. Adding 0.5 yields good results in terms of
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bias reduction for log-linear parameter estimates under the saturated
log-linear model. Because of this, it has also become the default
option in the log-linear analysis routine of SPSS 10.0 for saturated
models.

Usually, we want to have confidence intervals as well as point
estimates for the unknown parameters. In interval estimation, it is
common to assume that ML estimates are approximately normally
distributed and to apply the delta method to derive the standard errors.
However, the delta method is based on the asymptotic properties of the
ML estimates and works poorly for small samples (e.g., see Agresti
2002). In contingency tables with empty cells, adding a constant has
become a common way to improve the performance of confidence
intervals. For example, Agresti (2002) proposed adding a constant
that smoothes toward the model of independence to construct logit
confidence intervals for odds ratios. Chosen for its simplicity and good
performance, this method has been used successfully in investigating
a binomial proportion (see also Brown, Cai, and DasGupta 2001;
Agresti and Coull 1998).

From a Bayesian point of view, adding 0.5 to each cell entry is
equivalent to using a Dirichlet prior for the cell probabilities with all
parameters equal to 1.5 (see, e.g., Gelman et al. 1995:398-99). This
is, however, just one of the many possible ways of introducing prior
information on the parameter values. Another option is to use a dif-
ferent type of Dirichlet distribution, smoothing the parameter to a
specific model (see Bishop, Fienberg, and Holland 1975; Clogg et al.
1991). It is also possible to work with priors that have different distri-
butional forms than Dirichlet. Two such priors, which have become
popular in logit modeling, are normal priors (Congdon 2001; Koop
and Poirier 1995; Weiss et al. 1999) and the Jeffreys’s prior (Ibrahim
and Laud 1991). For instance, many of the log-linear and logit
modeling examples from the BUGS computer program manual
(Gilks, Thomas, and Spiegelhalter 1994) make use of normal priors,
and Congdon (2001) also suggests using normal priors with mean
zero and large variance when estimating binomial logit regression
coefficients in the absence of prior information.

Since Bayesian methods are often used in applied papers, more
research should be done to investigate whether Bayesian estimates
have better properties than ML estimates and whether some prior
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distributions produce better estimates than others. In the present work,
we deal with the problem of parameter estimation in sparse tables
using a Bayesian approach. In a 2 × 2 × 2 contingency table, the
estimation of two parameters was examined. First, we explored the
interaction parameter of a saturated logit model. Second, we exam-
ined an effect parameter of a no-interaction logit model. We computed
two commonly used Bayesian point estimators—posterior mode or
modal a posteriori (MAP) and posterior mean or expected a posteriori
(EAP)—and their confidence intervals under several prior distribu-
tions. A simulation experiment was performed to determine which
Bayesian estimation method produces the best estimates. The quality
of the point estimates was measured by the medians1 and the median
square errors, and the quality of the interval estimates was determined
by the coverage probabilities and the median widths of the confidence
intervals.

The remainder of this article is divided into four sections. The
first section illustrates the two parameters investigated by means of
the examples that illustrate the zero cells problems treated in each
case. In the second section, the Bayesian estimation methods used
are described. Next, the results of the simulation study are pre-
sented and discussed. The article ends with some conclusions and
recommendations.

TWO EXAMPLES

A three-way contingency table used by Agresti (2002, Table 2.6) in
the textbook Categorical Data Analysis to explain certain concepts
of the analysis of contingency tables is presented in Table 1. The
example deals with the effect of the racial characteristics of defendants
and victims on whether individuals convicted of homicide receive the
death penalty. The variables in Table 1 are “death penalty verdict”
(with the categories of yes = 1, no = 2) and “defendant’s race”
(X1) and “victim’s race” (X2) (with the categories of White = 1,
Black = 2).

Suppose we would like to test the hypothesis as to whether the
effect of the defendant’s race depends on the victim’s race regarding
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TABLE 1: Cross-Tabulation of Death Penalty Verdict by
Defendant’s and Victim’s Race

Death Penalty

Defendant’s Race (X1) Victim’s Race (X2) Yes No

White White 19 132
White Black 0 9
Black White 11 52
Black Black 6 97

Total 36 290

the giving of the death penalty. This implies that we have to estimate
a saturated logit model of the form

log

(
π1|jk
π2|jk

)
= α + β

X1
j + β

X2
k + β

X1X2
jk . (1)

Here, j and k denote categories of X1 and X2, respectively; πi|jk
represents the probability of giving “response” i on the dependent
variable given predictor values j and k; α is the model constant; and
the β terms are the logit effect parameters. When effect coding is
used, the interaction term β

X1X2
jk is directly related to the three-variable

log-odds ratio by

β
X1X2
11 = 1

4(log(or1) − log(or2)),

where log(or1) represents the effect of the defendant’s race on the
death penalty for White victims and is formulated as

log(or1) = log

(
π1|11

π2|11

)
− log

(
π1|21

π2|21

)
, (2)

and log(or2) the same effect for Black defendants,

log(or2) = log

(
π1|12

π2|12

)
− log

(
π1|22

π2|22

)
. (3)

The ML estimate β̂
X1X2
jk is obtained by replacing the expected

probabilities πi|jk by the corresponding observed probabilities pi|jk .
The confidence interval for the estimated logit interaction parameter
β̂

X1X2
jk is calculated by the formula

[β̂X1X2
jk − zα/2σ̂ (β̂

X1X2
jk ), β̂

X1X2
jk + zα/2σ̂ (β̂

X1X2
jk )], (4)
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TABLE 2: Point Estimates and Confidence Intervals for β
X1X2
11 Based on the Data in

Table 1

β̂
X1X2
11 σ(β̂) Lower Bound Upper Bound

Maximum likelihood (ML) estimate ∞ ∞ Undetermined ∞
Adding 0.5 –0.16 1.56 –3.22 2.90

which is based on the asymptotic normality of β̂
X1X2
jk . The estimated

asymptotic standard error σ̂ (β̂
X1X2
jk ) equals the square root of the diag-

onal elements of the Hessian matrix (for computational details, see
the section on estimation methods and algorithms below).

In Table 1, the (1, 1, 2) observed frequency is equal to zero. This
implies that the ML estimates of the logit parameters do not exist
because one of the sufficient statistics is zero. In addition, the confi-
dence interval (4) is not defined. Agresti (2002:397-98) proposes to
add 0.5 to each cell before computing the parameters of the saturated
model and their standard errors.

Point and interval estimates for the logit interaction parameter
obtained by estimating the saturated model with and without adding
the constant 0.5 to each cell are presented in Table 2. We only consider
β̂

X1X2
11 because the rest of the interaction parameters can be obtained

from this one. As can be seen in Table 2, if we do not add the constant,
β̂

X1X2
11 and σ̂ (β̂

X1X2
11 ) are infinity, so that the lower bound of the con-

fidence interval cannot be determined using (4). On the other hand,
if we add the constant 0.5, β̂

X1X2
11 and its confidence interval can be

computed.
In Table 3, the hypothetical contingency table constructed by Clogg

et al. (1991) to illustrate another zero-cells problem is presented. As
can be seen, the table contains two sampling zeros. The purpose of
this example is to predict a dichotomous outcome variable Y using
two dichotomous predictors, X1 and X2. We are interested in the
logit main effect parameters of the model without a three-variable
interaction effect,

log

(
π1|jk

π2|jk

)
= α + β

X1
j + β

X2
k . (5)
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TABLE 3: Hypothetical 2 × 2 × 2 Table With Two Sampling
Zeros

X1 X2 Y = 1 Y = 2

1 1 0 3
1 2 6 3
2 1 9 4
2 2 5 0

Total 20 10

When effect coding is used for the predictors, the logit main effect
parameter β

X1
j equals one half times the conditional log-odds ratios

given in equations (2) and (3):

β
X1
1 = 1

2 log(or1) = 1
2 log(or2).

Similar expressions could be given for β
X2
j .

Although all the two-way marginal totals are greater than zero,
ML estimates of the logit parameters do not exist. In this case, the
ML estimates of the probabilities reproduce the observed frequencies,
and, therefore, two estimated frequencies equal zero. For this reason,
the logit main effect parameters are plus or minus infinity. For more
details on the existence of ML estimates, see Haberman (1973).

Since the same result can be observed in both main effect para-
meters, it suffices to focus on β̂

X1
1 . In Table 4, we see the point esti-

mates and confidence intervals for β̂
X1
1 computed without and with

adding 0.5 to each cell. If we do not add the constant, the logit para-
meter β

X1
1 is minus infinity, and its standard error is infinity. As a con-

sequence, the lower bound of the confidence interval is minus infinity,
and the upper bound is not defined. A problem here is that, although
the parameter can be estimated if we add 0.5 to each cell, there is no
theoretical justification for adding 0.5 in this case because the model
is not saturated.

The examples described above represent the two parameters that
were investigated in detail and that are described in the sequel:

• Case 1 refers to the estimation of the logit interaction parameter
of a saturated model, β

X1X2
11 , which has been examined in the first
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TABLE 4: Point Estimates and Confidence Intervals for β
X1
1 Based on the Data in

Table 3

β̂
X1
1 σ(β̂) Lower Bound Upper Bound

Maximum likelihood (ML) estimate −∞ ∞ −∞ Undetermined
Adding 0.5 –1.07 0.58 –2.21 0.07

example. Here, the parameter cannot be estimated as a result of the
fact that ML estimates do not exist when at least one sufficient statistic
equals zero.

• Case 2 refers to the estimation of the logit main effect parameter β
X1
1

under the no three-variable interaction model. Here, ML estimates
of the logit effect parameters do not exist even though all two-way
marginal totals are larger than zero.

The Bayesian approach described in the next section may resolve
the problems associated with these two cases by introducing a certain
amount of prior information on the parameters.

BAYESIAN ESTIMATION

Let β be the vector of unknown logit parameters and y the observed
data. The most important difference between classical and Bayesian
approaches is that, while the former assumes that parameters have
unknown values that have to be estimated, the Bayesian approach
treats unknown parameters as random variables. The posterior distri-
bution p(β|y) is obtained by combining the likelihood function p(y|β)
with a prior distribution, p(β), and subsequently applying the Bayes
rule,

p(β|y) = p(y|β) p(β)∫
p(y|β) p(β)dβ

∝ p(y|β) p(β),

where ∝ stands for “is proportional to.” As is explained in more detail
below, different types of point estimators can be constructed using the
posterior distribution function, two of which are the posterior mode,
which represents the maximum of the posterior distribution, and the
posterior mean.
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The likelihood function we worked with is a (product) multinomial
density function; that is,

p(y|β) ∝
P∏

p=1

I∏
i=1

π
nip

i|p . (6)

Here, nip denotes the observed number of cases with covariate
pattern p that gives response i to the dependent variable. The number
of covariate patterns and the number of possible responses are denoted
P and I , respectively. The model probabilities that are functions of
the unknown parameters β are denoted by πi|p. Below, we will use
Np to denote the total number of cases with covariate pattern p; that
is, Np = �I

i=1nip .
Three types of priors for Bayesian estimation of logit models were

investigated here: natural conjugate priors, normal priors, and the
Jeffreys’s prior. It is typical of a Dirichlet prior, which is the conjugate
prior of the multinomial likelihood, as well as of a normal prior that
one has to define the values of one or more (hyper) parameters. In
contrast, given the form of the likelihood, there is only one Jeffreys’s
prior because this is calculated using a standard formula.

JEFFREYS’S PRIOR

A commonly used prior in Bayesian analysis is the Jeffreys’s
prior (Jeffreys 1961). This prior is obtained by applying Jeffreys’s
rule, which means taking the prior density to be proportional to
the square root of the determinant of the Fisher information matrix;
that is,

p(β) ∝ |I (β)| 1
2 .

Here, | · | denotes the determinant, and I (β) is the Fisher information
matrix, which equals the expected value of the second derivatives

of the log-likelihood function; that is, I (β) = −E
(

∂2 ln p(y|β)

(∂β)2

)
. When

the second derivatives matrix does not depend on the data, as with
the multinomial distribution, the information matrix simplifies to
I (β) = − ∂2 ln p(y|β)

(∂β)2 . An important property of Jeffreys’s prior is its
invariance under scale transformations of the parameters. This means,
for example, that it does not make a difference whether the prior is
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specified for the log-linear or the multiplicative parameters of the logit
model or whether we use dummy or effect coding.

We applied Jeffreys’s prior in the two cases described above.
Case 1 is a special situation because the Jeffreys’s prior has a very
simple form in saturated models, that is,

p(β) ∝
P∑

p=1

I∏
i=1

π 0.5
i|p ,

which yields a posterior that amounts to using nip + 0.5 as data.
In other words, in saturated models, using a Jeffreys’s prior for the
log-linear parameter means adding 0.5 to each cell entry.

However, in nonsaturated models (Case 2), the Jeffreys’s prior is
computationally more complicated. Let L denote the total number
of parameters, β� a particular parameter, and xip� an element of the
design matrix. The elements of first column of the design matrix (xip1)
will usually be equal to 1 to obtain an intercept. For a logit model of
the form

log

(
π1|p
π2|p

)
=

L∑
�=1

β� · xip�

and the (product) multinomial likelihood defined in equation (6),
element (�, m) of the information matrix is obtained as follows:

I�m(β) =
P∑

p=1

I∑
i=1

Npπi|p
(
xip� − xp�

) · (xipm − xpm

)
,

with xp� = �I
i=1πi|pxip�. Ibrahim and Laud (1991) give a general

theoretical justification for using Jeffreys’s prior with exponential
family distributions by showing that proper posterior distributions are
obtained.

UNIVARIATE NORMAL PRIOR

It is also possible to work with other types of prior distribution for
the logit parameters. Assuming that no information about the depen-
dence between parameters is available, it is convenient to adopt a
set of univariate normal priors. For instance, Congdon (2001) sug-
gested that, in absence of prior expectation about the direction or size
of covariate effects, flat priors may be approximated in BUGS by
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taking univariate normal distributions with mean zero and large
variance.

The effect of using normal priors with means of 0 is that parameter
estimates are smoothed toward zero. However, since this smoothing-
toward-zero effect is determined by the variance, it can be decreased
by increasing the variances. For example, a normal prior with large
variance for β

X1
j in Case 1 could be used if, a priori, a very weak

effect is expected of defendant’s race on death penalty, but because
this belief is very weak, the variance is set very large.

DIRICHLET PRIOR

In contrast to the normal priors presented above, which are based
on the logit parameters (β), the Dirichlet prior is based on the
conditional cell probabilities (π). As the conjugate prior of the multi-
nomial distribution, the Dirichlet prior belongs to the family of func-
tions whose densities have the same functional form as the likelihood
(Schafer 1997:306; Gelman et al. 1995:76). The Dirichlet distribution
is defined as

p(π) ∝
P∏

p=1

I∏
i=1

π
(αip−1)

i|p , (7)

where the αip terms are the (hyper) parameters of the prior. It is
as if �i�pαip cases are added to the data. In the saturated model
(Case 1), the posterior distribution is a Dirichlet distribution with
parameters nip + αip − 1. In Case 2, however, the probabilities are
restricted functions of the β parameters. Schafer (1997:306) referred
to a prior of this form as a constrained Dirichlet prior. Gelman et al.
(1995:398-99) also used such a prior in the Bayesian estimation of
log-linear models.

When using a Dirichlet prior, one has to specify the αip parameters.
If there is no information on the values of β, it is a common practice
to take a common value for the αip parameters. Using a common
value larger than 1 has the effect that the estimated probabilities are
smoothed toward a table in which all cell probabilities are equal.
Schafer (1997:253) called such a constant a flattening prior. Note that
adding 0.5 to each cell amounts to setting αip = 1.5.
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It is not always desirable to smooth the data toward the equal
probability model. It is, however, also possible to work with cell-
specific αip parameters that are in agreement with a particular
log-linear model. Bishop et al. (1975) proposed a prior, called a
pseudo-Bayes prior, in which αip parameters smooth the data toward
the independence model.

For logit models, Clogg and Eliason (1987) and Clogg et al. (1991)
proposed using a Dirichlet prior that, on the one hand, preserves the
marginal distribution of the dependent variable and, on the other hand,
takes into account the number of parameters to be estimated. It is
obtained as follows:

αip = 1 +
(∑P

p=1 nip∑P

p=1 Np

)(
L

P

)
.

Here, L denotes the number of unknown logit parameters. Note that
the value of αip does not depend on p. We will refer to this prior as
the Clogg-Eliason (C-E) prior.

In conclusion, whereas the Jeffreys’s prior is based on a structural
rule, the other prior distributions add some extra information that is in
agreement with a certain model to the data. In the discussed normal
prior and the Dirichlet prior with a constant hyperparameter, this is
the model in which the effects are zero. The idea underlying the C-E
prior is that this may also be a somewhat more realistic model and that
information on this model can be obtained from the data. For logit
models, the C-E prior is based on the independence model, which
is slightly less restricted than the model in which all parameters,
including the intercept, are assumed to be zero.

ESTIMATION METHODS AND ALGORITHMS

Various types of point estimators for the unknown parameters can
be used within a Bayesian context. Three of them are posterior mode,
posterior mean, and posterior median estimates. In the simulation
study reported in the next section, we worked with posterior mode
and posterior mean estimators, which are the most commonly used
in practice.

Posterior mode estimation of logit coefficients is similar to apply-
ing maximum likelihood estimation, assuming that the posterior
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distribution has a unique mode. If this is not the case, the solution
corresponding to the global maximum of the posterior function is
taken. This estimator is called maximum a posteriori (MAP). It should
be noted that, with Dirichlet priors, standard algorithms for ML
estimation, such as iterative proportional fitting (IPF) and Newton-
Raphson (NR), can be used to obtain MAP estimates (Gelman et al.
1995:399-400; Schafer 1997:307-8). However, when a normal prior
or the Jeffreys’s prior for nonsaturated models are used, the pos-
terior distribution does not have an analytically tractable form. For
these cases, we implemented a modified NR algorithm to obtain MAP
estimates. The algorithm uses numerical derivatives instead of
analytical ones (see Gelman et al. 1995:273), and it was applied on
the log-posterior density,

L(β) = log(p(β|y)) ∝ log(p(y|β)) + log(p(β)), (8)

which combined the logarithm of the likelihood function (defined
in equation (6)), log(p(y|β)), with the logarithm of the prior dis-
tribution, log(p(β)). The Newton-Raphson algorithm proceeds as
follows:

1. Choose a set of starting values β(0).
2. For each iteration, s = 1, 2, 3, . . .

• compute the vector of first derivatives and the matrix of second
derivatives with respect to β, denoted by L′ and L′′, evaluated at
the parameter values β(s−1);

• calculate the new β(s) by

β(s) = β(s−1) − [L′′(β(s−1))]−1L′(β(s−1));
• compute the value of the posterior distribution using the new β(s);
• stop the iterations if the increase of L(β) between subsequent

iterations is smaller than 10−8.

The expected a posteriori (EAP) or posterior mean estimator is
defined as follows:

E(β|y) =
∫

βp(β|y) dβ.

A problem in the computation of EAP estimates is that there is
no analytical solution for the integral at the right-hand side of the
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above equation. Markov chain Monte Carlo (MCMC) methods can,
however, be used to obtain samples from the posterior distribution
p(β|y) (Gelman et al. 1995, chap. 11). Suppose we sampled T sets
of parameters, where βt denotes one of these sets. The Monte Carlo
approximation of the posterior expectation is

E(β|y) ≈ 1

T

T∑
t=1

βt .

Gelman et al. (1995:400-3) and Schafer (1997:308-20) showed
that, with Dirichlet priors, it is possible to adapt the IPF algorithm to
obtain posterior mean estimates. This MCMC variant of IPF is called
Bayesian IPF. With other priors, no such simple algorithm is available.

We drew samples from the posterior distribution using a random-
walk Metropolis algorithm with a univariate normal jumping distri-
bution for each parameter. For each logit parameter β�, at iteration s,
one samples a value β∗

� from a univariate normal distribution with a
mean equal to the current value βs−1

� and a variance equal to σ 2
� , that

is, β∗
� ˜N(βs−1

� , σ 2
� ). The new set of parameters β∗ that is obtained in

this way is accepted with probability

r = min

(
1,

p(β∗|y)

p(βs−1|y)

)
.

That is, βs = β∗ with probability r; otherwise, βs = βs−1. In other
words, if the posterior associated with β∗ is larger than the one with
βs−1, we take the new values β∗; otherwise, we take the new values
with a probability equal to the ratio of the “new” and current posterior.

The exact implementation of our Metropolis algorithm is as
follows:

1. We retained each 10th sample for the computation of posterior means
and posterior standard errors.

2. The iterations started with 1,000 burning-in samples, with σ 2
� being

the inverse of the square of the number of parameters. Then, we per-
formed another 1,000 burning-in iterations, with σ 2

� equated to the
estimated variance from the first samples divided by the square of
the number of parameters. The σ 2

� for the subsequent iterations was
equated to the estimated variance from the second set of burning in
samples divided by the square of the number of parameters. This
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method yielded acceptance rates of around 0.5 for all situations that
we investigated.

3. The convergence of the algorithm was determined using the R̂
1
2

criterion described in Gelman et al. (1995, Sect. 11.4). For this pur-
pose, three independent parallel sequences were generated. Conver-
gence was reached when the R̂

1
2 values were smaller than 1.001 for

each parameter, which is an extremely precise converge criterion. This
convergence was checked at each 25,000th iteration. The maximum
number of iterations was set equal to 1,000,000.

To obtain interval estimators, we assumed that the marginal
posterior distribution of the parameters is approximately a normal
distribution, and confidence intervals are computed following equa-
tion (4). The standard error of the posterior mode is the square root
of the diagonal elements of the second derivatives matrix of the pos-
terior distribution, and the standard error of the posterior mean is the
square root of the variance of the samples retained in the Metropolis
algorithm (see Step 1 of the Metropolis algorithm).

SIMULATION STUDY

In this section, we present the results of the two simulation experi-
ments we conducted to evaluate the performance of point estimators
and confidence intervals based on different prior distributions.

In Case 1, investigating the logit interaction parameter of a satu-
rated model, we generated data from a multinomial distribution whose
parameters satisfied a logit model in which the effect parameters β

X1
1

and β
X2
1 were fixed at zero, and the logit interaction parameter took

the following values: 0 represents the uniform model in which all
the probabilities are equal, 1 represents an intermediate interaction
between the predictors, and 2 represents a strong interaction between
the predictors. In Case 2, investigating a logit main effect parameter
of a no-interaction model, we generated data from a multinomial
distribution whose parameters satisfied a logit model with effect
parameters equal to each other and taking the following values: 0 rep-
resents the uniform model, 1 represents intermediate effects, and 2
represents strong effects. In each case, we varied the sample size by
taking samples of 20 and 100 units. Five thousand samples were drawn



102 SOCIOLOGICAL METHODS & RESEARCH

from each condition. The data were simulated using Vermunt’s (1997)
program LEM. The input files used can be found in Appendix A.

MAP and EAP estimates were obtained using the Newton-Raphson
algorithm and the Metropolis algorithm described in the previous
section. The priors used were the Jeffreys’s prior, three types of
Dirichlet prior with constant αik parameters, the prior defined by
Clogg and Eliason (1987; C-E), and three types of normal prior.
For Jeffreys’s and the C-E prior, no additional parameters needed
to be specified. The parameters of the three Dirichlet distributions
were αik = 1.5 [Dir(1.5)], αik = 1.333 [Dir(1.333)], and αik = 1.1
[Dir(1.1)], where the first represents the standard practice of adding
0.5 to each cell entry, and the second and third are examples of
situ-ations in which a somewhat smaller number is added to make
the prior less informative. The three types of normal priors were
N(0,4), N(0,10), and N(0,25). To approximate the ML estimates, we
used MAP under a Dirichlet prior distribution with αik = 1.001.
Using this prior distribution, we prevented numerical problems in the
estimation, especially with the small sample of size 20.

To summarize the results obtained, we report the median of the
MAP and EAP estimates and the root median square errors (RMdSE),
that is, the square root of the median of (β̂ − β)2. Although mean
squared errors are the most common statistics used to measure
the quality of the point estimates, we used median squared errors
instead to avoid the effect that extreme values have on the mean.
It should be noted that for many simulated samples, the ML estimates
will be equal to plus (or minus) infinity. A single occurrence of infin-
ity will give a mean of infinity and a root mean square error of infinity,
which shows that these measures are not very informative for the per-
formance of ML and that median-based measures are better suited for
the comparison of Bayesian and ML estimates. For the confidence
intervals, we report the coverage probabilities, which represent the
proportion of times that the simulated intervals contain the population
parameter, and the median widths of the intervals.

By definition, a 95 percent confidence interval should have a cov-
erage probability of at least 0.95. However, even if the true coverage
probability equals 95 percent, the coverage probabilities coming from
the simulation experiment will not be exactly equal to 0.95 because
of the Monte Carlo error. This error tends to zero when the number of



Galindo-Garre et al. / BAYESIAN POSTERIOR ESTIMATION 103

replications tends to infinity. Since we worked with 5,000 replications,
the Monte Carlo standard error was equal to ( 0.95·0.05

5000 )
1
2 = 0.0031,

which means that coverage probabilities between 0.946 and 0.9531
are in agreement with the nominal level of 95 percent.

Tables 5 and 6 summarize the results for Case 1 when the sample
sizes are n = 20 and n = 100, respectively. It should be noted that
the results from the Jeffreys’s prior were omitted because, in this
case, they were equal to the results from the Dir(1.5) prior. From
Tables 5 and 6, we can see that, when β

X1X2
11 equals zero, there are

not many differences between the results obtained under different
prior distributions for both point estimates. However, the differences
increase with higher values of β

X1X2
11 . If we compare MAP and EAP,

we can see that the values of the EAP are always more extreme than
the values of the MAP. Also, in terms of RMdSE, it can be seen
that MAP gives better results than EAP. If we compare the various
prior distributions, we see that C-E, Dir(1.5), and, therefore, also the
Jeffreys’s priors produce the smallest RMdSE for β

X1X2
11 equal to 0

or 1. However, if β
X1X2
11 equals 2, the medians are considerably smaller

than the population values. In that case, Dir(1.1) and N(0,4) give
more accurate results. For the interval estimators, the conclusions are
similar: Again, C-E, Dir(1.5), and Jeffreys’s priors show the smallest
median widths. As far as the coverage probabilities are concerned,
only the intervals for the EAP under normal priors present coverage
probabilities below the 95 percent nominal level.

Tables 7 and 8 summarize the results for Case 2 when the
sample sizes are n = 20 and n = 100, respectively. In terms of point
estimators, the results are similar to the results obtained in Case 1.
Again, the smoothing effect of C-E and Dir(1.5) priors seems to be
too extreme when the parameter value is high (βX1

1 = 2). The medians
are smaller than the population value, and, for n = 20, the RMdSE
of the Dir(1.5) is higher than the RMdSE obtained under the other
prior distributions. Also in terms of coverage probabilities, the C-
E prior and Dir(1.5) yield values lower than the nominal level. The
Jeffreys’s prior is a better option in Case 2 because it produces a
lower RMdSE and a smaller median width along all the degrees of
association. The smoothing effect of Dir(1.1) and the normal priors
is small, but the confidence intervals tend to be huge. This means that
the population parameter is included in the interval only because of
the extreme width but not because of the accuracy of the estimates.
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CONCLUSIONS AND RECOMMENDATIONS

Bayesian estimation of two logit parameters in a 2 × 2 × 2 table has
been investigated: (1) estimation of β

X1X2
11 , which measures the logit

interaction effect of X1 and X2 on a response variable Y under the
saturated model, and (2) estimation of β

X1
1 , which measures the logit

main effect of X1 on the response variable Y , under the assumption
that β

X1X2
11 = 0. The performance of both point estimates and con-

fidence intervals has been evaluated. A good point estimator has small
bias (defined here as the deviation of the median estimate from the
true value) and small residual median square error (RMdSE). A good
confidence interval has small median width under the condition that
its coverage probability is at least 0.95.

Using these criteria, the simulation results can be summarized as
follows:

1. All of the prior distributions studied yield better point estimates and
confidence intervals than maximum likelihood.

2. In almost all cases, the bias and RMdSE of the MAP estimates are
smaller than those of the EAP estimates. In all cases, the median
width of the MAP confidence intervals is smaller than the median
width of the EAP confidence intervals. Furthermore, in several cases
with normal priors, coverage probabilities are unacceptably low for
the EAP confidence intervals.

3. Among the three normal priors studied, the one with variance 4,
N(0, 4), performs best, and the one with variance 25, N(0, 25),
performs worst.

4. Among the three Dirichlet priors studied, the one with parameter 1.33,
Dir(1.33), appears to be the most reasonable; a Dir(1.5) seems to
oversmooth the data, and a Dir(1.1) does not sufficiently smooth them.
Moreover, the Dir(1.5) gives unacceptably low coverage probabilities
for the confidence interval for β

X1
1 when its true value equals 2.

In conclusion, among the procedures studied, the most reasonable
ones seem to be MAP estimation with a Jeffreys’s, C-E, Dir(1.33), or
N(0,4) prior.2 EAP estimation, which is commonly recommended in
textbooks, appears to perform badly under the criteria we have used.
Congdon’s (2001) recommendation to use a normal distribution with
large variance as a “noninformative” prior should not be followed
when the sample size is small. The parameters of the Dir(1.33) and
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N(0, 4) have no particular theoretical justification, and therefore it
is not clear how they might perform in other (logit or log-linear)
estimation problems. Because the Jeffreys’s and C-E priors do have
a good theoretical justification, and because they perform reasonably
well in the present simulations, these may be the most recommendable
in general settings.

A program to do the estimation studied in this article is available
from the first author. Estimation with Dirichlet priors can be done
in standard statistical software packages by adding a constant to the
observed frequencies and then doing ML estimation. Estimation with
normal priors can be done with the WINBUGS program. Unfortu-
nately, no standard software is available yet for estimation with the
recommended Jeffreys’s or C-E priors.

APPENDIX A

The LEM input file used to simulate the data used in investigating the
three-variable interaction parameter was as follows:

man 3

dim 2 2 2

lab A B C

mod ABC {cov(ABC,1)}

des [1 0 -1 0 -1 0 1 0]

sim 20 baysim.dat

*sim 100 baysim.dat

sta log cov(ABC) [0]

*sta log cov(ABC)[1]

*sta log cov(ABC) [2]

The LEM input file used to simulate the data used in investigating the
logit parameter was the following:
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man 3

dim 2 2 2

lab A B C

mod ABC {cov(AC,1),cov(BC,1)}

des [1 0 -1 0 1 0 -1 0]

sim 20 baysim.dat

*sim 100 baysim.dat

sta log cov(AC) [0]

sta log cov(BC) [0]

*sta log cov(AC) [1]

*sta log cov(BC) [1]

*sta log cov(AC) [2]

*sta log cov(BC) [2]

The asterisk means that the program does not read what is written
behind.

APPENDIX B

The WINBUGS file for Case 1 is the following:

model {

beta0˜dnorm(0,0.1)

beta1˜dnorm(0,0.1)

beta2˜dnorm(0,0.1)
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for(i in 1: I){

for(j in 1: J){

X[i,j,1:K]˜dmulti(p[i,j,1:K],n[i,j])

n[i,j]<-sum(X[i,j,])

for(k in 1:K){

p[i,j,k]<-phi[i,j,k]/sum(phi[i,j,])

log(phi[i,j,k])

<-beta0*z1[k]+beta1*z2[i,k]

+beta2*z3[j,k]

}

}

}

}

list( I = 2, J = 2, K =2,

X = structure(.Data = c

(0, 3, 6, 3, 9, 4, 5, 0),

.Dim = c(2, 2, 2)),

z1=c(1,0), z2=structure(.Data=c(1,0,-1,0),

.Dim=c(2,2)),

z3=structure(.Data=c(1,0,-1,0),

.Dim=c(2,2)))

NOTES

1. To compare maximum likelihood (ML) and Bayesian results, we used the median as
a measure of central tendency because it is less sensitive than the mean to extreme values.
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Extreme values—logit parameters close to plus or minus infinity—are very common in ML
estimation with small samples. The consequence of using the median is, therefore, that it is
less unfavorable for ML compared to the Bayesian methods than when using the mean. This
prevents us from overstating the advantages of Bayesian methods.

2. The same results would have been obtained if means and mean squared errors had been
used to compare the different prior distributions to each other.
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